Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

5 Mai 2025 Daniele Hamm

Corrigé 9

Exercice 1: Intégrales curvilignes
Etudiez les notes complémentaires sur les intégrales curvilignes mises a disposition sur moodle.

Exercice 2: Une autre maniére de déterminer ¢

Dans le cours, nous avons vu que si on place une plaque conductrice infinie et non-chargée dans un
champ électrique uniforme E, (avec la normale de la plaque paralléle a EO), une densité de charge
de surface o; se forme par influence sur la plaque, ot o = €9 Fp.
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A partir de cela, nous avons déterminé, dans le cours, le potentiel électrostatique ® partout dans
I'espace avec la relation :
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(a) Utiliser ici la relation différentielle E = —V® pour déterminer ® a partir de E par intégration.
On suppose que =03 2z =0.

(b) Faire un schéma de la situation et indiquer les lignes de champ de E ainsi que les surfaces
équipotentielles.

Solution:
(a) Ona: -Vo=—[ 2 | = 0
5 E.

On en déduit donc que ®(z,y, z) = ®(z). En exprimant E, a extérieur et a U'intérieur de
la plaque, on obtient :
Ey forz > d
—92 = ¢ 0 forz€]0,d]
Ey forz <0
Ce qui entraine que :
—FEyz+cy pourz>d

P(2) = co pour z €]0,d]
—Foz+c3 pourz <0
ou c¢1, c2, et c3 sont des constantes d’intégration. En utilisant que ®(0) = 0 et que le



potentiel est une grandeur continue, on obtient co = 0, ¢c; = Epd et c3 = 0. Et on a donc
bien le résultat du cours :
—Ey(z —d) pourz>d
D(z) = 0 pourz € [0,d]
—Fyz pourz <0
(b) On sait que le potentiel est constant selon z et y. Les équipotentielles sont donc des surfaces
planes définies par z = cste. Elles sont représentées sur la figure ci-dessous, ainsi que les
lignes de champ E.
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Exercice 3: Effet de pointe
On considére un conducteur sphérique de rayon R et de charge Q.

(a) Utilisez la loi de Gauss pour trouver le champ E en tout point de I'espace.

(b) Calculez le potentiel électrostatique partout dans I'espace en utilisant la relation suivante, vue
en cours :

—

(B -o)== [ F.a

Choisissez la constante libre du potentiel telle que ¢(7) — 0 quand ¥ — oo.

(c) On suppose maintenant que ce conducteur sphérique est maintenu & un potentiel V' fixé, par
exemple a |'aide d'une pile électrique. Exprimez le champ électrique a la surface de la sphére en
fonction de R. Qu'est ce vous constatezsi R — 07

Solution:

(a) Etant donné que le matériau est conducteur, la charge Q va directement se répartir sur la
surface de la spheére. En plus, dii & la symétrie du probléme, la densité de charge de surface
qui en résulte sera homogéne. On applique la loi de Gauss en utilisant la surface d’une
sphére de rayon r centrée sur le centre de la sphére de rayon R. Par symétrie du probléme,
on déduit aisément que E(7) est orienté selon &, et ne dépend que de r : E(7) = E(r)é;.
On doit considérer deux cas : » < R (on calcule le champ E a lintérieur de la sphére) et
r > R (on calcule le champ E a Dextérieur de la sphére).



r < R Dans ce cas, comme on se trouve & l'intérieur du conducteur, on a directement que
E =0, donc
E(r)=0

r > R On applique le théoréme de Gauss. On a directement

4rr?B(r) = S) = E(r) = 47727"2

On cherche a calculer le potentiel en un point A, en fixant une condition limite de sorte a
ce que le potentiel s’annule & I'infini. Comme le champ électrique est purement radial et ne
dépend que de r (voir la figure ci-dessous), on peut choisir un B tel que, en coordonnées
sphériques, A et B soient tous les deux alignés sur I’axe fixé par €. en A.
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On a alors que
o(B)-o() = [ Edl
A—B

Supposons que A et B sont tous les deux & 'extérieur de la sphére conductrice. En utilisant
que dl = dré,, il vient

Donc

On peut donc écrire que

Q 1"
6(8) - o(4) = | 7]
TEQT A
Et donc 0
1 1
A)=¢(B) — — - —
¢(4)=¢(B) 4dreg <TB T‘A>
Faisons maintenant tendre la position de B vers l'infini (rg — o0). On a % — 0 et
¢ (B) — 0, et donc, comme 1'équation précédente reste valide,
Q 1
A) = —
¢ (4) dmeg T4



Ainsi, on a, pour tout point de 'espace situé a l’extérieur de la sphére (en notant r = ||7]|)

@1

dreg 1

o) =

Considérons maintenant un point A & l'intérieur de la sphére. Dans celle-ci, E = 6, donc
I'intégrande est non-nulle uniquement dans la partie du chemin située a 'extérieur de la
sphére (toujours en considérant un point B a 'extérieur de la sphére)

¢(B)—¢(A) =— /R deqr? ar
On obtient alors Q 1 1
¢(4)=¢(B) — 4dmeg <7”B B R>

Et en faisant tendre la position de B vers l'infini (rp — 00). On a é —0etp(B)—0,et
donc, comme ’équation précédente reste valide,

Q 1
A) = —=
¢(4) dmeg R
Par conséquent, pour un point & l'intérieur de la sphére, on a
. Q 1
7) = -
¢(7) dmeg R
En résumé :
¢(f) =424 sir<R
o(r) = 4mo% sinon
Notez que, de maniére plus directe, on aurait pu trouver ¢ par la relation E= —6(1).
On a, d’aprés les questions précédentes, que
Q Q1
E(r)= et = -
(r) Amegr? ¢(r) Ameg T
A extérieur de la sphére. Donc
¢
E(r)=-
(r="1
En particulier a proximité de la surface de la sphére, on a
¢
E(R)=—
(R)="%
Si ¢ est maintenu fixé & V', on a alors
v
E(R) ==
(R) =+

Par conséquent, pour un potentiel donné, le champ électrique a proximité de la sphére est
d’autant plus fort que le rayon de celle-ci est petit. Pour une sphére de rayon R trés petit,
on peut donc arriver & générer des champs électriques trés intenses. Ce phénoméne peut
par exemple étre observé par des lueurs apparaissant aux extrémités des méats des navires
et sur les ailes des avions certains soirs : sous l'effet du champ électrique intense généré a
ces extrémités par leffet de pointe, lair s’ionise (les électrons et les noyaux qui composent
les atomes se séparent) et une lumiére est émise. Le phénomeéne est connu sous le nom de
feu de Saint-Elme.



Gauche : feu de Saint-Elme sur un bateau (G. Hartwig) dans The Aerial World, 1886.
Droite : feu de Saint-Elme sur un avion.

Exercice 4: Principe du générateur de Van de Graaff (examen 2017)

On considére un conducteur sphérique de rayon interne b et de rayon externe c. Le conducteur est
isolé et porte une charge Q1 > 0. Au centre de celui-ci, on place un conducteur sphérique de rayon
a, avec a < b. Ce conducteur est isolé et porte une charge Q2 > 0.

Figure - Les conducteurs I'un dans I'autre

Dessinez qualitativement la situation en régime statique, en indiquant la direction et le sens du
champ électrique E et la répartition des charges.

Déterminez F dans tout |'espace.
Déterminez la densité de charge de surface sur les deux conducteurs.
Quelle est la difference de potentiel électrostatique entre les deux conducteurs?

On relie les deux conducteurs par un fil conducteur. Aprés avoir attendu un temps suffisam-
ment long pour atteindre une situation statique, quelle sera la nouvelle répartition des charges?
Justifiez votre réponse.



Solution:

(a)

(b)

Par symétrie du probléme, on a que E = E(r)é,.
Afin de déterminer E(r), on utilise la loi de Gauss intégrale appliqué a une sphére de rayon
r:

On distingue 3 situations

— Pour r < a et r €]b,c[, on a E(r) = 0 (en électrostatique le champ électrique dans un
conducteur est nul) .

— Pour 7 €]a, b], on a Qiny = Q2 et donc d’apres la loi de Gauss :
4777“2E:?—02$E: Q>

4eqmr?

— Pour 7 > con a Qi = Q1 + Q2. De la méme maniére, on obtient E(r) = %

En électrostatique, comme les charges dans un conducteur se répartissent en surface, on a
pour le conducteur intérieur :

Q2

47ra202:Q2:>02: 3
dma

Pour le conducteur extérieur, on utilise d’abord que E(r) = 0 pour b < r < ¢ et donc,
d’aprés le théoréme de Gauss, la charge totale se trouvant a l'intérieur d’une sphére de
rayon r tel que b < r < ¢ doit étre nulle. Pour la densité de charge de surface sur la face
intérieure, on trouve donc :

Q2

2 _ —
47h 0-1__Q2:>0-1__W

Le conducteur étant globalement chargé, de charge 1, on obtient en effectuant un bilan
des charges :

4rbloq + 47Tc2ai =1

et donc, pour la densité de charge sur la surface extérieure :

Q1 ¥ Qi+ Q

01

= 0'1 =
A2 2 4d7c?



(d) On a:

U=¢p— da

= —/ab E(r)dr

b

Q2

= — —2dr
o Ameor

[
| dweor

a
Q2 (1 1
" dme (5 E)

(e) En reliant les deux conducteurs, on force U = 0. Pour que cette condition soit satisfaite,
il faut donc, selon le résultat de la partie d), que @2 = 0. Ceci signifie que la charge sur
le conducteur intérieur se déplace entiérement vers le conducteur extérieur. La charge de
celui-ci sera Qior = Q1 + Q2. Par exemple, cette propriété est a la base du générateur de
Van de Graaff qui est illustré dans l'extrait suivant du livre (montré ici simplement pour

votre information) “Physics for Scientists and Engineers with Modern Physics" écrit par
Serway Jewett.

The Van de Graaff Generator

Experimental results show that when a charged conductor is placed in contact with
the inside of a hollow conductor, all the charge on the charged conductor is trans-
ferred to the hollow conductor. In principle, the charge on the hollow conductor
and its electric potential can be increased without limit by repetition of the process.

In 1929, Robert J. Van de Graaff (1901-1967) used this principle to design and
build an electrostatic generator, and a schematic representation of it is given in
Figure 25.23. This type of generator was once used extensively in nuclear physics
research. Charge is delivered continuously to a high-potential electrode by means
of a moving belt of insulating material. The high-voltage electrode is a hollow metal
dome mounted on an insulating column. The belt is charged at point @ by means of
a corona discharge between comb-like metallic needles and a grounded grid. The
needles are maintained at a positive electric potential of typically 10* V. The positive
charge on the moving belt is transferred to the dome by a second comb of needles at
point ®. Because the electric field inside the dome is negligible, the positive charge
on the belt is easily transferred to the conductor regardless of its potential. In prac-
tice, it is possible to increase the electric potential of the dome until electrical dis-
charge occurs through the air. Because the “breakdown” electric field in air is about
3 % 10° V/m, a sphere 1.00 m in radius can be raised to a maximum potential of
3 % 105 V. The potential can be increased further by increasing the dome’s radius
and placing the entire system in a container filled with high-pressure gas.

Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive
enough energy to initiate nuclear reactions between themselves and various target
nuclei. Smaller generators are often seen in science classrooms and museums. If a
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The person’s hair
acquires a net positive charge, and each strand is repelled by all the others as in the
opening photograph of Chapter 23.

Metal dome

Insulator

. ol s The charge is deposited
The Electrostatic Precipitator on the belt at point ® and
One important application of electrical discharge in gases is the electrostatic precipi- transferred to the hollow
tator. This device removes particulate matter from combustion gases, thereby reduc- conductor at point ®.

ing air pollution. Precipitators are especially useful in coal-burning power plants
and industrial operations that generate large quantities of smoke. Current systems
—_— gram of a Van de Graafl generator.
are z.iblc to eliminate more than 99% of the a:sh fl.‘()m smok‘c. ' . Charge is transferved to the metal
Figure 25.24a (page 766) shows a schematic diagram of an electrostatic precipi-  dome at the top by means of a
tator. A high potential difference (typically 40 to 100 kV) is maintained between  moving belt.

Figure 25.23 Schematic dia-



Exercice 5: Visualisation du champ électrique avec la simulation Comsol

Accédez la simulation Comsol de deux conducteurs au lien suivant (accés avec votre login Gaspar) :
http://sbcomsol.intranet.epfl.ch:2036/. L utilisation d'un VPN est nécessaire pour y acceder
en dehors de I'EPFL.

Familiarisez-vous avec la simulation Electrostatique : deux métaux chargés - cage de Faraday. Suivez
les instructions pour changer la forme et la charge de chaque conducteur, et puis pour visualiser le
champ électrique et le potentiel électrostatique générés par ces conducteurs chargeés.

Dans cet exercice nous allons visualiser le champ électrique dii aux deux conducteurs de formes et
charges différentes, et nous verrons certains effets électrostatiques.

()

Changez la dimension et la charge du cylindre pour le rendre négligeable. Modifiez le rayon de
la barre creuse de section carrée pour lui donner la forme d'un tube circulaire :

— Cylindre :
— Rayon = 0.1 cm,
— Position £ = —9 cm,

— Charge C1 =0 C/m,
— Barre carrée

— Rayon de courbure des coins = 2 cm,

— Charge C1= —0.4 uC/m.
Notez la forme du champ électrique a I'extérieur du tube, a I'intérieur du tube et dans le
conducteur. Convainquez-vous, en particulier, que le champ électrique est en effet purement
radial.

Revenez a la configuration de la barre carrée en mettant le rayon de courbure des coins & zéro.
Notez maintenant la forme du champ électrique. Ce que vous observez est I'effet de pointe.

Inversez les charges des deux conducteurs pour rendre la barre carrée de charge zéro et pour
que le cylindre agisse comme une charge ponctuelle. Expliquez la forme du champ électrique a
I'intérieur de la barre carrée creuse.

Maintenant placez la charge ponctuelle a I'intérieur de la barre carrée creuse en mettant la
position x a zéro. Expliquez la forme du champ électrique a I'extérieur du carré creux.

Solution:

(a)

Pour un conducteur cylindrique et creux chargé négativement, vous trouveriez un champ
électrique de la forme comme dans la figure. Les lignes de champ pointeraient dans le sens
inverse pour un conducteur chargé positivement. Notez que le champ électrique n’existe que
en dehors du conducteur, et ni dans le conducteur méme ni a l'intérieur du cylindre creux.
De plus, notez que le champ est purement radial.


http://sbcomsol.intranet.epfl.ch:2036/
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(b) En transformant le cylindre creux en barre carrée creuse, nous observons l'effet de pointe.
Cet effet donne que le champ électrique soit plus élevé aux coins de la barre, ot le champ
n’est plus purement radial mais a maintenant une composante azimutale. A Uintérieur du
conducteur et a I'intérieur de la barre creuse nous n’avons toujours pas de champ électrique.

Norme du champ électrique
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(c) Maintenant nous observons l'effet d’une charge ponctuelle sur un conducteur creux. Le
conducteur creux est une cage Faraday : il n'y a aucun champ électrique a l'intérieur du
conducteur creux car les charges libres dans le conducteur se répartissent pour compenser
le champ électrique externe. Nous voyons & partir du graphique que le champ électrique est
exactement zéro a l'intérieur de la barre creuse (entre -lcm et +1lcm sur axe x &y = 0
cm) ainsi que a l'intérieur du conducteur, et donc le potentiel est constant.



Horizontal ligne @ y=0 cm

Champ électrique (bleu) et potentiel (vert)
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Nous observons que dans tous les cas, les lignes de champ

la surface du conducteur.

x-coordinate (cm)

arrivent perpendiculairement a
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(d) Avec la charge ponctuelle a l'intérieur de la barre creuse, nous ne voyons plus leffet de la
cage Faraday. La loi de Gauss nous dit que nous aurons un champ électrique en dehors du
conducteur - le conducteur ne bloque pas le champ électrique dans ce sens.
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Exercice 6: D'ou vient I'énergie ?

On considére un condensateur plan de surface A. Les deux plaques sont séparées par une distance d.
Le condensateur porte une charge g isolée. Quelle est |'énergie stockée dans ce condensateur ?

On écarte maintenant ses plaques d'une distance supplémentaire d. Ainsi la séparation entre les
plaques est de 2d. Quelle est I'énergie du condensateur dans cette nouvelle configuration ?

Expliquez cette variation d'énergie.

Solution:

) )

+q +q
At + + +|+ + + + A+ + + +H+ + + +

l

En cours, nous avons vu que ’énergie stockée dans un condensateur plan est égale a
1 €0A

_ 1 s 1A 21 o
W =sCU _2( v ><Ed) = Je0E”Ad

Le champ électrique généré par un plan infini chargé ne dépend pas de la distance entre les
plaques mais uniquement de sa charge g. Dans les deux cas qui nous intéressent, la charge est
la méme donc E est le méme également. On a :

1
Wy = 5sOEQAd et Wy = eoFE?Ad

Donc Wy > Wj.

Pourquoi I'énergie stockée dans le condensateur a-t-elle augmenté ? Comme les charges sur les

11



deux plaques sont de signes opposés, les plaques s’attirent et il faut fournir un travail pour
écarter les plaques. L’énergie fournie durant ce travail sera stockée dans le condensateur, ainsi
Wy > W1. On peut calculer la valeur de ce travail.

A

tH++++ [+t

E R d

F

Pour déplacer la plaque du bas il faut exercer une force opposée a la force électrique exercée
par les charges positives sur les charges négatives. Appelons les deux plaques ppas, Praut- Chaque
plaque génére la moitié du champ électrique total entre les plaques :

- E . E . B
E= pras + Eppgur = <_ 9 ex) + <_ 9 ex) =—-Fe,

Donc chaque plaque ne ressent que la moitié du champ électrique existant entre les plaques.
Ainsi la force a appliquer & ppqs pour compenser la force électrique ﬁel due & ppgue vaut donc
F = —7qux, orientée vers le bas. Le travail nécessaire pour déplacer la plaque d’une distance
d selon une trajectoire v qui va de x = 0 & x =—d vaut :

L 1 L1 11
AW = LF-dl_A(—2qux) (—dl &) = 2qE/dl— SEd = SCUEd

v
1eoA
- 5% EdEd = fsoEQAd

On voit que l'on a bien Wy = W7 + AW.

Remarque : Pour calculer AW on a calculé l'intégrale curviligne d’'un champ vectoriel F le

long du chemin ~ qui va de x = 0 & = —d. L’intégrale curviligne d’un champ vectoriel dépend
de l'orientation de la trajectoire : si on considére la traject01re ~" allant de x =—d a z = 0, on
obtient un travail négatif, AW’ = —AW, comme la force F et le déplacement infinitésimal dl

ont directions opposées. Par contre, les intégrales curvilignes d’un champ scalaire le long d’un
chemin ne dépendent pas de l'orientation de la trajectoire. On a donc, avec la notation ci-dessus,

/dl:/dl:
v ol
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Exercice 7: Condensateurs en série et en paralléle

(a) Montrez que deux condensateurs en série de capacité C et Cy peuvent &tre remplacés par un

seul condensateur de capacité Cy,

1 _ 1 4, 1
G — O T 05
C,

C

(b) Montrez que si les deux condensateurs sont mis en paralléle, alors ils peuvent étre remplacés par
un condensateur de capacité C,,.

Ceq =C1 + 02

Geénéralisez les deux cas pour n condensateurs de capacité C1, ...C,,.

Solution:

(a) On rappelle que la capacité du condensateur est : Q = C' - U, ou @ est la charge sur une
des plaques et U est la différence de tension entre les plaques.

@
4y
— ¢
11
q>
- C,
Y
u
|1 Y
_ C,
~qn
o
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Faisons le raisonnement directement pour n condensateurs en série. On cherche un conden-
sateur Cgq tel que la tension U et la charge totale soient conservées. Notons u; la tension
aux bornes du condensateur i et ¢; sa charge. On a :

De plus, si 'on considére deux condensateurs en série, la portion de fil reliant les deux
condensateurs relie la plaque inférieure d’un des condensateurs a la plaque supérieure d’un
autre condensateur. Ces deux plaques et le fil reliant les deux composent un conducteur.
Or, ce conducteur est non-chargé. Comme il n’y a pas de perte de charge le long de ce fil,
les charges sur ces deux plaques satisfont donc

—qi +qi+1=0 V1

pour que chaque conducteur plaque-fil-plaque soit non-chargé. La charge dans les N conden-
sateurs est donc la méme :

G=q=Q Vij

i 1
Xu=2G=9%a

Donc :

Par hypothése on a :

Q
;ui =U = Ceq
Donc :
R
Ceq C;

Pour les condensateurs en paralléle, on conserve les notations de la question précédente

avec cette fois :
> a=Q
i

En revanche on a désormais :
Vi,j, U:uZ'ZU,j

puisque toutes les bornes supérieures et toutes les bornes inférieures sont reliées ensemble.

Or :

Z%ZZQ’WZUZQ

Et par hypotheése :
Z qi = Q = CeqU

Donc :

Cog = ZC
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