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Corrigé 9

Exercice 1: Intégrales curvilignes
Étudiez les notes complémentaires sur les intégrales curvilignes mises à disposition sur moodle.

Exercice 2: Une autre manière de déterminer φ
Dans le cours, nous avons vu que si on place une plaque conductrice infinie et non-chargée dans un
champ électrique uniforme ~E0 (avec la normale de la plaque parallèle à ~E0), une densité de charge
de surface σel se forme par influence sur la plaque, où σel = ε0E0.

À partir de cela, nous avons déterminé, dans le cours, le potentiel électrostatique Φ partout dans
l’espace avec la relation :

Φ(B)− Φ(A) = −
∫ B

A

~E · ~dl. (1)

(a) Utiliser ici la relation différentielle ~E = −~∇Φ pour déterminer Φ à partir de ~E par intégration.
On suppose que Φ = 0 à z = 0.

(b) Faire un schéma de la situation et indiquer les lignes de champ de ~E ainsi que les surfaces
équipotentielles.

Solution:

(a) On a : −~∇Φ = −

 ∂Φ
∂x
∂Φ
∂y
∂Φ
∂z

 =

 0
0
Ez


On en déduit donc que Φ(x, y, z) = Φ(z). En exprimant Ez à l’extérieur et à l’intérieur de
la plaque, on obtient :

−∂Φ
∂z =


E0 for z > d
0 for z ∈]0,d[
E0 for z < 0


Ce qui entraine que :

Φ(z) =


−E0z + c1 pour z > d

c2 pour z ∈]0,d[
−E0z + c3 pour z < 0


où c1, c2, et c3 sont des constantes d’intégration. En utilisant que Φ(0) = 0 et que le
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potentiel est une grandeur continue, on obtient c2 = 0, c1 = E0d et c3 = 0. Et on a donc
bien le résultat du cours :

Φ(z) =


−E0(z − d) pour z > d

0 pour z ∈ [0,d]
−E0z pour z < 0


(b) On sait que le potentiel est constant selon x et y. Les équipotentielles sont donc des surfaces

planes définies par z = cste. Elles sont représentées sur la figure ci-dessous, ainsi que les
lignes de champ E.

Exercice 3: Effet de pointe
On considère un conducteur sphérique de rayon R et de charge Q.
(a) Utilisez la loi de Gauss pour trouver le champ ~E en tout point de l’espace.

(b) Calculez le potentiel électrostatique partout dans l’espace en utilisant la relation suivante, vue
en cours :

φ (B)− φ (A) = −
∫
A→B

~E · d~l

Choisissez la constante libre du potentiel telle que φ(~r)→ 0 quand ~r →∞.

(c) On suppose maintenant que ce conducteur sphérique est maintenu à un potentiel V fixé, par
exemple à l’aide d’une pile électrique. Exprimez le champ électrique à la surface de la sphère en
fonction de R. Qu’est ce vous constatez si R→ 0 ?

Solution:

(a) Étant donné que le matériau est conducteur, la charge Q va directement se répartir sur la
surface de la sphère. En plus, dû à la symétrie du problème, la densité de charge de surface
qui en résulte sera homogène. On applique la loi de Gauss en utilisant la surface d’une
sphère de rayon r centrée sur le centre de la sphère de rayon R. Par symétrie du problème,
on déduit aisément que ~E(~r) est orienté selon ~er et ne dépend que de r : ~E(~r) = E(r)~er.
On doit considérer deux cas : r < R (on calcule le champ ~E à l’intérieur de la sphère) et
r > R (on calcule le champ ~E à l’extérieur de la sphère).
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r < R Dans ce cas, comme on se trouve à l’intérieur du conducteur, on a directement que
~E = ~0, donc

E(r) = 0

r > R On applique le théorème de Gauss. On a directement

4πr2E(r) =
Q

ε0
⇒ E(r) =

Q

4πε0r2

(b) On cherche à calculer le potentiel en un point A, en fixant une condition limite de sorte à
ce que le potentiel s’annule à l’infini. Comme le champ électrique est purement radial et ne
dépend que de r (voir la figure ci-dessous), on peut choisir un B tel que, en coordonnées
sphériques, A et B soient tous les deux alignés sur l’axe fixé par ~er en A.

On a alors que

φ (B)− φ (A) = −
∫
A→B

~E · d~l

Supposons que A et B sont tous les deux à l’extérieur de la sphère conductrice. En utilisant
que d~l = dr~er, il vient

φ (B)− φ (A) = −
∫
A→B

Q

4πε0r2
~er · dr~er

Donc
φ (B)− φ (A) = −

∫ rB

rA

Q

4πε0r2
dr

On peut donc écrire que

φ (B)− φ (A) =

[
Q

4πε0r

]rB
rA

Et donc
φ (A) = φ (B)− Q

4πε0

(
1

rB
− 1

rA

)
Faisons maintenant tendre la position de B vers l’infini (rB → ∞). On a 1

rB
→ 0 et

φ (B)→ 0, et donc, comme l’équation précédente reste valide,

φ (A) =
Q

4πε0

1

rA
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Ainsi, on a, pour tout point de l’espace situé à l’extérieur de la sphère (en notant r = ||~r||)

φ (~r) =
Q

4πε0

1

r

Considérons maintenant un point A à l’intérieur de la sphère. Dans celle-ci, ~E = ~0, donc
l’intégrande est non-nulle uniquement dans la partie du chemin située à l’extérieur de la
sphère (toujours en considérant un point B à l’extérieur de la sphère)

φ (B)− φ (A) = −
∫ rB

R

Q

4πε0r2
dr

On obtient alors
φ (A) = φ (B)− Q

4πε0

(
1

rB
− 1

R

)
Et en faisant tendre la position de B vers l’infini (rB →∞). On a 1

rB
→ 0 et φ (B)→ 0, et

donc, comme l’équation précédente reste valide,

φ (A) =
Q

4πε0

1

R

Par conséquent, pour un point à l’intérieur de la sphère, on a

φ (~r) =
Q

4πε0

1

R

En résumé : {
φ (~r) = Q

4πε0
1
R si r < R

φ (~r) = Q
4πε0

1
r sinon

Notez que, de manière plus directe, on aurait pu trouver φ par la relation ~E = −~∇φ.
(c) On a, d’après les questions précédentes, que

E(r) =
Q

4πε0r2
et φ (r) =

Q

4πε0

1

r

à l’extérieur de la sphère. Donc

E(r) =
φ

r

En particulier à proximité de la surface de la sphère, on a

E(R) =
φ

R

Si φ est maintenu fixé à V , on a alors

E(R) =
V

R

Par conséquent, pour un potentiel donné, le champ électrique à proximité de la sphère est
d’autant plus fort que le rayon de celle-ci est petit. Pour une sphère de rayon R très petit,
on peut donc arriver à générer des champs électriques très intenses. Ce phénomène peut
par exemple être observé par des lueurs apparaissant aux extrémités des mâts des navires
et sur les ailes des avions certains soirs : sous l’effet du champ électrique intense généré à
ces extrémités par l’effet de pointe, l’air s’ionise (les électrons et les noyaux qui composent
les atomes se séparent) et une lumière est émise. Le phénomène est connu sous le nom de
feu de Saint-Elme.
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Gauche : feu de Saint-Elme sur un bateau (G. Hartwig) dans The Aerial World, 1886.
Droite : feu de Saint-Elme sur un avion.

Exercice 4: Principe du générateur de Van de Graaff (examen 2017)
On considère un conducteur sphérique de rayon interne b et de rayon externe c. Le conducteur est
isolé et porte une charge Q1 > 0. Au centre de celui-ci, on place un conducteur sphérique de rayon
a, avec a < b. Ce conducteur est isolé et porte une charge Q2 > 0.

Figure - Les conducteurs l’un dans l’autre

(a) Dessinez qualitativement la situation en régime statique, en indiquant la direction et le sens du
champ électrique ~E et la répartition des charges.

(b) Déterminez ~E dans tout l’espace.

(c) Déterminez la densité de charge de surface sur les deux conducteurs.

(d) Quelle est la différence de potentiel électrostatique entre les deux conducteurs ?

(e) On relie les deux conducteurs par un fil conducteur. Après avoir attendu un temps suffisam-
ment long pour atteindre une situation statique, quelle sera la nouvelle répartition des charges ?
Justifiez votre réponse.
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Solution:

(a)

(b) Par symétrie du problème, on a que ~E = E(r)~er.
Afin de déterminer E(r), on utilise la loi de Gauss intégrale appliqué à une sphère de rayon
r :

s
~E · ~dS = Qint

ε0

On distingue 3 situations
— Pour r < a et r ∈]b, c[, on a E(r) = 0 (en électrostatique le champ électrique dans un

conducteur est nul) .
— Pour r ∈]a, b[, on a Qint = Q2 et donc d’après la loi de Gauss :

4πr2E = Q2

ε0
⇒ E = Q2

4ε0πr2

— Pour r > c on a Qint = Q1 +Q2. De la même manière, on obtient E(r) = Q1+Q2

4ε0πr2

(c) En électrostatique, comme les charges dans un conducteur se répartissent en surface, on a
pour le conducteur intérieur :

4πa2σ2 = Q2 ⇒ σ2 =
Q2

4πa2

Pour le conducteur extérieur, on utilise d’abord que E(r) = 0 pour b < r < c et donc,
d’après le théorème de Gauss, la charge totale se trouvant à l’intérieur d’une sphère de
rayon r tel que b < r < c doit être nulle. Pour la densité de charge de surface sur la face
intérieure, on trouve donc :

4πb2σ1 = −Q2 ⇒ σ1 = − Q2

4πb2

Le conducteur étant globalement chargé, de charge Q1, on obtient en effectuant un bilan
des charges :

4πb2σ1 + 4πc2σ′1 = Q1

et donc, pour la densité de charge sur la surface extérieure :

σ′1 =
Q1

4πc2
− b2

c2
σ1 =

Q1 +Q2

4πc2

6



(d) On a :

U = φb − φa

= −
∫ b

a
E(r)dr

= −
∫ b

a

Q2

4πε0r2
dr

=

[
Q2

4πε0r

]b
a

=
Q2

4πε0

(
1

b
− 1

a

)
(e) En reliant les deux conducteurs, on force U = 0. Pour que cette condition soit satisfaite,

il faut donc, selon le résultat de la partie d), que Q2 = 0. Ceci signifie que la charge sur
le conducteur intérieur se déplace entièrement vers le conducteur extérieur. La charge de
celui-ci sera Qtot = Q1 + Q2. Par exemple, cette propriété est à la base du générateur de
Van de Graaff qui est illustré dans l’extrait suivant du livre (montré ici simplement pour
votre information) “Physics for Scientists and Engineers with Modern Physics" écrit par
Serway Jewett.
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Exercice 5: Visualisation du champ électrique avec la simulation Comsol
Accédez la simulation Comsol de deux conducteurs au lien suivant (accès avec votre login Gaspar) :
http://sbcomsol.intranet.epfl.ch:2036/. L’utilisation d’un VPN est nécessaire pour y acceder
en dehors de l’EPFL.
Familiarisez-vous avec la simulation Electrostatique : deux métaux chargés - cage de Faraday. Suivez
les instructions pour changer la forme et la charge de chaque conducteur, et puis pour visualiser le
champ électrique et le potentiel électrostatique générés par ces conducteurs chargés.
Dans cet exercice nous allons visualiser le champ électrique dû aux deux conducteurs de formes et
charges différentes, et nous verrons certains effets électrostatiques.
(a) Changez la dimension et la charge du cylindre pour le rendre négligeable. Modifiez le rayon de

la barre creuse de section carrée pour lui donner la forme d’un tube circulaire :
— Cylindre :

— Rayon = 0.1 cm,
— Position x = −9 cm,
— Charge C1 = 0 C/m,

— Barre carrée
— Rayon de courbure des coins = 2 cm,
— Charge C1= −0.4 µC/m.

Notez la forme du champ électrique à l’extérieur du tube, à l’intérieur du tube et dans le
conducteur. Convainquez-vous, en particulier, que le champ électrique est en effet purement
radial.

(b) Revenez à la configuration de la barre carrée en mettant le rayon de courbure des coins à zéro.
Notez maintenant la forme du champ électrique. Ce que vous observez est l’effet de pointe.

(c) Inversez les charges des deux conducteurs pour rendre la barre carrée de charge zéro et pour
que le cylindre agisse comme une charge ponctuelle. Expliquez la forme du champ électrique à
l’intérieur de la barre carrée creuse.

(d) Maintenant placez la charge ponctuelle à l’intérieur de la barre carrée creuse en mettant la
position x à zéro. Expliquez la forme du champ électrique à l’extérieur du carré creux.

Solution:

(a) Pour un conducteur cylindrique et creux chargé négativement, vous trouveriez un champ
électrique de la forme comme dans la figure. Les lignes de champ pointeraient dans le sens
inverse pour un conducteur chargé positivement. Notez que le champ électrique n’existe que
en dehors du conducteur, et ni dans le conducteur même ni à l’intérieur du cylindre creux.
De plus, notez que le champ est purement radial.
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(b) En transformant le cylindre creux en barre carrée creuse, nous observons l’effet de pointe.
Cet effet donne que le champ électrique soit plus élevé aux coins de la barre, où le champ
n’est plus purement radial mais a maintenant une composante azimutale. Á l’intérieur du
conducteur et à l’intérieur de la barre creuse nous n’avons toujours pas de champ électrique.

(c) Maintenant nous observons l’effet d’une charge ponctuelle sur un conducteur creux. Le
conducteur creux est une cage Faraday : il n’y a aucun champ électrique à l’intérieur du
conducteur creux car les charges libres dans le conducteur se répartissent pour compenser
le champ électrique externe. Nous voyons à partir du graphique que le champ électrique est
exactement zéro à l’intérieur de la barre creuse (entre -1cm et +1cm sur l’axe x à y = 0
cm) ainsi que à l’intérieur du conducteur, et donc le potentiel est constant.
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Nous observons que dans tous les cas, les lignes de champ arrivent perpendiculairement à
la surface du conducteur.

(d) Avec la charge ponctuelle à l’intérieur de la barre creuse, nous ne voyons plus l’effet de la
cage Faraday. La loi de Gauss nous dit que nous aurons un champ électrique en dehors du
conducteur - le conducteur ne bloque pas le champ électrique dans ce sens.
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Exercice 6: D’où vient l’énergie ?
On considère un condensateur plan de surface A. Les deux plaques sont séparées par une distance d.
Le condensateur porte une charge q isolée. Quelle est l’énergie stockée dans ce condensateur ?
On écarte maintenant ses plaques d’une distance supplémentaire d. Ainsi la séparation entre les
plaques est de 2d. Quelle est l’énergie du condensateur dans cette nouvelle configuration ?
Expliquez cette variation d’énergie.

Solution:

d

2d

+   +   +   +   +   +   +   +   

-   -   -   -   -    -   -   -   -   

+   +   +   +   +   +   +   +

-   -   -   -   -   -   -   -   -   -

A
+q +q

A

(1) (2)

En cours, nous avons vu que l’énergie stockée dans un condensateur plan est égale à

W =
1

2
CU2 =

1

2

(
ε0A

d

)(
Ed
)2

=
1

2
ε0E

2Ad

Le champ électrique généré par un plan infini chargé ne dépend pas de la distance entre les
plaques mais uniquement de sa charge q. Dans les deux cas qui nous intéressent, la charge est
la même donc E est le même également. On a :

W1 =
1

2
ε0E

2Ad et W2 = ε0E
2Ad

Donc W2 > W1.
Pourquoi l’énergie stockée dans le condensateur a-t-elle augmenté ? Comme les charges sur les
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deux plaques sont de signes opposés, les plaques s’attirent et il faut fournir un travail pour
écarter les plaques. L’énergie fournie durant ce travail sera stockée dans le condensateur, ainsi
W2 > W1. On peut calculer la valeur de ce travail.

+ + + + + + + + + + + + + 

- - - - - - - - - - - - - - - - - - 

X

E -qE

F

dl

d

d

Fel

Pour déplacer la plaque du bas il faut exercer une force opposée à la force électrique exercée
par les charges positives sur les charges négatives. Appelons les deux plaques pbas, phaut. Chaque
plaque génère la moitié du champ électrique total entre les plaques :

~E = ~Epbas + ~Ephaut =
(
− E

2
~ex

)
+
(
− E

2
~ex

)
= −E ~ex

Donc chaque plaque ne ressent que la moitié du champ électrique existant entre les plaques.
Ainsi, la force à appliquer à pbas pour compenser la force électrique ~Fel due à phaut vaut donc
~F = −1

2qE ~ex, orientée vers le bas. Le travail nécessaire pour déplacer la plaque d’une distance
d selon une trajectoire γ qui va de x = 0 à x =−d vaut :

∆W =

∫
γ

~F · ~dl =

∫
γ

(
− 1

2
qE ~ex

)
· (−dl ~ex) =

1

2
qE

∫
γ
dl =

1

2
qEd =

1

2
CUEd

=
1

2

ε0A

d
EdEd =

1

2
ε0E

2Ad

On voit que l’on a bien W2 = W1 + ∆W .

Remarque : Pour calculer ∆W on a calculé l’intégrale curviligne d’un champ vectoriel ~F le
long du chemin γ qui va de x = 0 à x = −d. L’intégrale curviligne d’un champ vectoriel dépend
de l’orientation de la trajectoire : si on considère la trajectoire γ′ allant de x =−d à x = 0, on
obtient un travail négatif, ∆W ′ = −∆W , comme la force ~F et le déplacement infinitésimal ~dl
ont directions opposées. Par contre, les intégrales curvilignes d’un champ scalaire le long d’un
chemin ne dépendent pas de l’orientation de la trajectoire. On a donc, avec la notation ci-dessus,∫

γ
dl =

∫
γ′
dl = d.
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Exercice 7: Condensateurs en série et en parallèle
(a) Montrez que deux condensateurs en série de capacité C1 et C2 peuvent être remplacés par un

seul condensateur de capacité Ceq
1
Ceq

= 1
C1

+ 1
C2

(b) Montrez que si les deux condensateurs sont mis en parallèle, alors ils peuvent être remplacés par
un condensateur de capacité Ceq.

Ceq = C1 + C2

Généralisez les deux cas pour n condensateurs de capacité C1, ...Cn.

Solution:

(a) On rappelle que la capacité du condensateur est : Q = C · U , où Q est la charge sur une
des plaques et U est la différence de tension entre les plaques.
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Faisons le raisonnement directement pour n condensateurs en série. On cherche un conden-
sateur Ceq tel que la tension U et la charge totale soient conservées. Notons ui la tension
aux bornes du condensateur i et qi sa charge. On a :∑

i

ui = U

De plus, si l’on considère deux condensateurs en série, la portion de fil reliant les deux
condensateurs relie la plaque inférieure d’un des condensateurs à la plaque supérieure d’un
autre condensateur. Ces deux plaques et le fil reliant les deux composent un conducteur.
Or, ce conducteur est non-chargé. Comme il n’y a pas de perte de charge le long de ce fil,
les charges sur ces deux plaques satisfont donc

−qi + qi+1 = 0 ∀ i

pour que chaque conducteur plaque-fil-plaque soit non-chargé. La charge dans les N conden-
sateurs est donc la même :

qi = qj ≡ Q ∀ i, j

Donc : ∑
i

ui =
∑
i

qi
Ci

= Q
∑
i

1

Ci

Par hypothèse on a : ∑
i

ui = U =
Q

Ceq

Donc :
1

Ceq
=
∑
i

1

Ci

(b) Pour les condensateurs en parallèle, on conserve les notations de la question précédente
avec cette fois : ∑

i

qi = Q

En revanche on a désormais :
∀ i, j, U = ui = uj

puisque toutes les bornes supérieures et toutes les bornes inférieures sont reliées ensemble.

Or : ∑
i

qi =
∑
i

Ciui = U
∑
i

Ci

Et par hypothèse : ∑
i

qi = Q = CeqU

Donc :
Ceq =

∑
i

Ci
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